Synthesis of Novel 3-(α-Arylhydrazono-1,3,4-oxadiazol-2-ylmethyl)2-oxo-1,2-dihydroquinoxalines and Their Characteristic Tautomerism
between the Hydrazone Imine and Diazenyl Enamine Forms
Yoshihisa Kurasawa\*, Muneto Muramatsu, Yoshihisa Okamoto and Atsushi Takada

School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108, Japan Received October 15, 1985

The reactions of 3-(α-arylhydrazono)hydrazinocarbonylmethyl-2-oxo-1,2-dihydroquinoxalines 1a,b with triethyl orthoesters resulted in the intramolecular cyclization to give the 3-(α-arylhydrazono-1,3,4-oxadiazol-2-ylmethyl)-2-oxo-1,2-dihydroquinoxalines 4a-d, but not the 1,2,4,5-tetrazepinylquinoxalines 5a-d. The cyclization mode into the 1,3,4-oxadiazole ring was confirmed by the alternate syntheses of 4a,c from the reactions of 3-(1,3,4-oxadiazol-2-ylmethylene)-2-oxo-1,2,3,4-tetrahydroquinoxalines 6a,b with o-chlorophenyl diazonium salts, respectively. Moreover, 4a-d exhibited an interesting tautomerism between the hydrazone imine form A and diazenyl enamine form B.

## J. Heterocyclic Chem., 23, 637 (1986).

In a previous paper [1], we reported the conversions of 3-(α-arylhydrazono)hydrazinocarbonylmethyl-2-oxo-1,2dihydroquinoxalines 1 into the 1-aryl-3-quinoxalinyl-1,2,4triazol-5-ones 2 (Scheme 1) as a part of our series of studies on the synthesis of azole-conjugated quinoxalines [2-6]. In continuation of the above work, we undertook the intramolecular cyclization of 1 with triethyl orthoesters for the purpose of an additional ring construction, since there were at least two cyclization possibilities in intermediary hydrazonic esters 3a-d (Scheme 2). As the result, these reactions were found to effect cyclizations into the 1,3,4oxadiazole ring, but not into the tetrazepine ring, giving the novel 3-(α-arylhydrazono-1,3,4-oxadiazol-2-ylmethyl)-2-oxo-1,2-dihydroquinoxalines 4a-d. Moreover, 4a-d were found to exhibit an interesting tautomeric equilibria between the hydrazone imine form A and diazenyl enamine form B (Schemes 2,3). This paper describes the synthesis of the novel 1,3,4-oxadiazoles 4a-d and their tautomeric equilibria between the A and B forms.

The reactions of la,b (a = o-Cl, b = p-Cl) with triethyl orthoesters (R = H, Me) would provide intermediary hydrazonic esters 3a-d [2], whose cyclizations were expected to furnish the oxadiazole ring and/or tetrazepine ring by the I and/or II routes, respectively. However, these reactions were clarified to afford a sole product by the route I cyclization. Namely, the pmr spectral data of the above cyclization products supported the structures of the 3-(α-arylhydrazono-1,3,4-oxadiazol-2-ylmethyl)-2-oxo-1,2dihydroquinoxalines 4a-d, but not the 1,2,4,5-tetrazepinylquinoxalines 5a-d, as described later. Furthermore, the structural establishment of 4a-d was accomplished by the alternate syntheses, that is, the reactions of 3-(1,3,4-oxadiazol-2-ylmethylene)-2-oxo-1,2,3,4-tetrahydroquinoxalines **6a,b** (a, R = H, b, R = Me) with o-chlorophenyl diazonium salt resulted in the diazotization at the methylenic carbon [1] to give the  $\alpha$ -arylhydrazones 4a and 4c.

Scheme 1

Our previous paper [7] reported the tautomeric equilibria of 3-formyl-2-oxo-1,2-dihydroquinoxaline chlorophenylhydrazones between the hydrazone imine form A and diazenyl enamine form B by means of the pmr spectral data in dimethylsulfoxide (DMSO), wherein the hydrazone CH proton signals (& 7.87-7.73 ppm) appeared at a higher magnetic field than the diazenyl enamine CH proton signals (δ 8.40-8.37 ppm), and the hydrazone NH and  $N_4-H$  proton signals appeared at  $\delta$  14.73-14.45 ppm and δ 11.33-11.26 ppm, respectively. Based on these data, the pmr spectral data of 4a-d also suggested the tautomeric equilibria between the hydrazone imine form A and diazenyl enamine form B in DMSO. Namely, the pmr spectrum of 4a exhibited the hydrazone NH (δ 14.35 ppm) and N<sub>4</sub>-H (\delta 12.45 ppm) proton signals, together with the two  $C_{5'}$  – H [ $\delta$  9.30 (due to **A** form), 9.47 (due to **B** form) ppm] proton signals. The spectrum of 4b also showed the two  $C_{5'}$  – H [ $\delta$  9.27 (due to **A** form), 9.42 (due to **B** form) ppml proton signals, whose values were similar to those of 4a. In case of 4b, hydrazone NH and N<sub>4</sub>-H proton signals were observed at  $\delta$  11.45 and 11.97 ppm, respectively. The spectra of 4c and 4d represented the hydrazone NH [ $\delta$  14.22 (4c), 11.18 (4d) ppm] and N<sub>4</sub> – H [ $\delta$  12.42 (4c), 11.95 (4d) ppm] proton signals at similar magnetic fields to those observed in 4a and 4b, respectively. The C5' - Me proton signals of the A and B forms were observed at the same magnetic fields in 4c ( $\delta$  2.57 ppm) and 4d ( $\delta$ 2.59 ppm). Moreover, the <sup>13</sup>C-nmr spectrum of 4c ex-

Scheme 2

SCHEME 3

hibited the thirty-six carbon signals due to the **A** (eighteen carbons) and **B** (eighteen carbons) forms of **4c**, wherein the C5'-Me carbon signals were observed at  $\delta$  10.67 and 10.48 ppm. The <sup>13</sup>C-nmr spectrum of **4d** also showed the thirty-two carbon signals due to the **A** (eighteen carbons) and **B** (eighteen carbons) forms of **4d**, wherein the C5'-Me carbon signals were observed at  $\delta$  10.71 and 10.50 ppm.

The tautomer ratios of the  $\bf A$  form versus the  $\bf B$  form in  $\bf 4a-d$  were 2:1, 5:1, 1:1 and 4:1, respectively, when calculated from the integral curves of the hydrazone NH, N<sub>4</sub>-H and C5'-H proton signals.

Thus, **4a-d** have been clarified to be the compounds exhibiting the characteristic tautomeric equilibria between the hydrazone imine and diazenyl enamine forms by means of the pmr and <sup>13</sup>C-nmr spectral data.

#### General Procedure.

All melting points are uncorrected. Infrared (ir) spectra were recorded from potassium bromide discs on a JASCO IRA-1 spectrophotometer. Mass spectra (ms) were determined with a JMS-01S spectrometer (JEOL). The pmr and

Table 1
The PMR Spectral Data for 4a-d

| Compound  | Tautomer<br>A | Ratio [a]<br>B | Chemical Shift $\delta$ (ppm)<br>NH                                         | C5'-H or -Me                            | aromatic          |
|-----------|---------------|----------------|-----------------------------------------------------------------------------|-----------------------------------------|-------------------|
| 4a        | 2             | 1              | 14.35 (s, 2/3 H, C=N-NH-) [b]                                               | 9.30 (s, 2/3 H, C <sub>5</sub> '-H) [b] | 8.03-6.80 (m, 8H) |
|           |               |                | 12.45 (s, 1/3 H, N <sub>4</sub> -H) [c]<br>12.80 (s, 1H, N <sub>1</sub> -H) | 9.47 (s, 1/3 H, C <sub>5</sub> '-H) [c] |                   |
| <b>4b</b> | 5             | 1              | 11.45 (s, $5/6$ H, $C = N-NH-$ ) [b]                                        | 9.27 (s, 5/6 H, C <sub>5</sub> '-H) [b] | 8.07-7.10 (m, 8H) |
|           |               |                | 11.97 (s, 1/6 H, N <sub>4</sub> -H) [c]                                     | 9.42 (s, 1/6 H, C <sub>5</sub> '-H) [c] |                   |
|           |               |                | 12.80 (s, 1H, N <sub>1</sub> -H)                                            |                                         |                   |
| 4c        | 1             | 1              | 14.22 (s, $1/2$ H, $C = N-NH-)$ [b]                                         | 2.57 (s, 3H, C <sub>5</sub> '-Me)       | 8.00-6.93 (m, 8H) |
|           |               |                | 12.42 (s, 1/2 H, N <sub>4</sub> -H) [c]                                     |                                         |                   |
|           |               |                | 12.77 (s, 1H, N <sub>1</sub> -H)                                            |                                         |                   |
| <b>4d</b> | 4             | 1              | 11.18 (s, $4/5$ H, $C = N-NH-$ ) [b]                                        | 2.59 (s, 3H, C5'-Me)                    | 8.07-7.17 (m, 8H) |
|           |               |                | 11.95 (s, 1/5 H, N <sub>4</sub> -H) [c]                                     |                                         |                   |
|           |               |                | 12.76 (s, 1H, N <sub>1</sub> -H)                                            |                                         |                   |

<sup>[</sup>a] Calculated from the integral curves of the hydrazone NH, N<sub>4</sub>-H and C<sub>5</sub>-H proton signals. [b] Signals due to the tautomer **A**. [c] Signals due to the tautomer **B**.

Table 2

The <sup>13</sup>C-nmr Spectral Data for **4c.d** 

| Compound   | Chemical Shift $\delta$ (ppm)                                                                                                                                                                                                                                                               |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>4</b> c | 163.11, 163.07, 162.81, 162.34, 159.11, 154.22, 153.32, 151.62, 148.72, 139.05, 138.79, 132.54, 132.34, 131.82, 131.76, 131.53, 130.55, 129.67, 129.24, 128.59, 128.51, 128.15, 124.18, 124.09, 123.83, 123.54, 122.52, 122.27, 119.29, 118.54, 115.77, 115.19, 115.08, 95.50, 10.67, 10.48 |
| 4d         | 163.36, 162.65, 162.49, 154.20, 154.18, 153.80, 153.65, 151.81, 151.17, 142.53, 141.79, 132.80, 132.45, 132.11, 131.88, 131.71, 131.27, 129.40, 129.31, 129.13, 126.52, 125.26, 124.23, 123.75, 123.58, 121.01, 116.11, 115.69, 115.19, 95.52, 10.71, 10.50                                 |

<sup>13</sup>C-nmr spectra were measured in deuteriodimethylsulfoxide at 34° with an EM-390 and an XL-400 spectrometers at 90 and 400 MHz, respectively, using tetramethylsilane as an internal standard.

# Preparation of 4a,b.

A solution of **1a** or **1b** [1,8] (10 g) and triethyl orthoformate (100 ml) in acetic acid (500 ml) was refluxed in an oil bath for 5 hours to precipitate crystals, which were excluded by suction filtration. Evaporation of the filtrate in vacuo afforded yellow crystals **4** [**a**, 5.17 g (55%), **b**, 5.94 g (63%)]. Recrystallization from N,N-dimethylformamidelethanol provided yellow needles, mp 281-282° (**4a**), 270-271° (**4b**); ms: m/z 366 (M<sup>+</sup>), 368 (M<sup>+</sup> + 2) (**4a**,**b**); ir:  $\nu$  cm<sup>-1</sup> 1660, 1607, 1590, 1570 (**4a**); 1670, 1605, 1590 (**4b**).

Anal. Calcd. for C<sub>17</sub>H<sub>11</sub>ClN<sub>6</sub>O<sub>2</sub>: C, 55.67; H, 3.02; Cl, 9.67; N, 22.91. Found: C, 55.45; H, 3.06; Cl, 9.65; N, 23.06 (4a). C, 55.48; H, 3.11; Cl, 9.41; N, 22.67 (4b).

## Preparation of 4c,d.

A solution of **1a** or **1b** (10 g) and triethyl orthoacetate (100 ml) in acetic acid (500 ml) was refluxed in an oil bath for 5 hours. Evaporation of the solvent *in vacuo* furnished yellow crystals **4** [**c**, 7.10 g (73%), **d**, 8.28 g (78%)]. Recrystallization from N,N-dimethylformamide/ethanol gave yellow needles, mp 276-277° (**4c**), 267-268° (**4d**); ms: m/z 380 (M<sup>+</sup>), 382 (M<sup>+</sup>+2) (**4c**,**d**); ir:  $\nu$  cm<sup>-1</sup> 1670, 1607, 1590, 1570 (**4c**); 1660, 1605, 1590, 1565 (**4d**).

Anal. Calcd. for  $C_{18}H_{13}ClN_6O_2$ : C, 56.78; H, 3.44; Cl, 9.31; N, 22.07. Found: C, 56.55; H, 3.44; Cl, 9.16; N, 22.28 (4c). C, 56.52; H, 3.50; Cl, 9.23; N, 22.14 (4d).

## Alternate Synthesis of 4a,c.

A solution of sodium nitrite (0.364 g, 5.27 mmoles) in water (10 ml) was added dropwise to a suspension of

o-chloroaniline hydrochloride (0.864 g, 5.27 mmoles) in acetic acid (20 ml) with stirring in an ice-water bath to give a clear solution, which was added to a suspension of **6a** (1 g, 4.93 mmoles) in acetic acid (30 ml) and water (10 ml) with stirring in an ice-water bath. After stirring was continued for 30 minutes, the reaction mixture was heated on a boiling water bath for 1 hour with initial stirring to afford a clear solution and then to precipitate yellow crystals of **4a**, which were collected by suction filtration (0.64 g). Evaporation of the filtrate in vacuo afforded yellow crystals of **4a** (0.50 g), total yield, 1.14 g (71%).

Compound 4c was obtained in a similar manner to the above (73%).

#### REFERENCES AND NOTES

- [1] Y. Kurasawa, M. Muramatsu, K. Hotehama, Y. Okamoto and A. Takada, J. Heterocyclic Chem., in press.
- [2] Y. Kurasawa, Y. Moritaki and A. Takada, Synthesis, 238 (1983); Y. Kurasawa, Y. Moritaki, T. Ebukuro and A. Takada, Chem. Pharm. Bull., 31, 3897 (1983).
- [3] Y. Kurasawa, S. Nakamura, K. Moriyama, K. Suzuki and A. Takada, Heterocycles, 22, 1189 (1984).
- [4] Y. Kurasawa, K. Suzuki, S. Nakamura, K. Moriyama and A. Takada, Heterocycles, 22, 695 (1984); Idem, Chem. Pharm. Bull., 32, 4752 (1984).
- [5] Y. Kurasawa, M. Ichikawa, I. Kamata, Y. Okamoto and A. Takada, Heterocycles, 23, 281 (1985); Y. Kurasawa, Y. Okamoto and A. Takada, J. Heterocyclic Chem., in press.
- [6] Y. Kurasawa and A. Takada, Heterocycles, 14, 611 (1980); Idem, Chem. Pharm. Bull., 28, 3537 (1980).
- [7] Y. Kurasawa, K. Yamazaki, S. Tajima, Y. Okamoto and A. Takada, J. Heterocyclic Chem., in press.
- [8] Compounds 1a,b were obtained as hydrazinium salts [1], which were employed in the present investigation.